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Energy- and Latency-Efficient Architectures, Chips, and
Integrated Systems towards Ubiquitous Edge Intelligence

Research Overview
Problem Statement. The recording-breaking performance of artificial intelligence (AI) algorithms,
especially deep neural networks (DNNs), has motivated a growing demand for bringing powerful AI-
powered intelligent functionalities onto edge devices, e.g., virtual reality/augmented reality (VR/AR)
and medical devices, towards ubiquitous edge intelligence. However, the powerful performance of AI
algorithms comes with much increased computational complexity and memory storage requirements,
which stand at odds with the limited compute/storage resources on edge devices. Additionally, the
stringent application-specific requirements, including real-time response (i.e., high throughput/low
latency), high energy efficiency, and small form factor, further aggravate the aforementioned gap.
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Figure 1: My holistic solutions from efficient architectures, to chips, and to integrated systems.

Research Goals and Deliveries. My research aims at closing the above-mentioned gap between
the tremendous resource requirements of powerful AI algorithms and the constrained resources on
edge devices to enable ubiquitous edge intelligence. To tackle this, my research delivers holistic
solutions from energy- and latency-efficient architectures [1–3], to chips [4, 5], and to integrated
systems [4, 6, 7]. Furthermore, my research works share the same underlying design insight, which
is to advocate simultaneously harmonizing dedicated algorithms and architectures/chips/integrated-
systems via algorithm-hardware co-design and leveraging application-level opportunities to mini-
mize redundant computations and/or data movements in the processing pipeline and thus boost the
achievable efficiency, as categorized below:
• Algorithm-Hardware Co-designed Architecture: One major efficiency bottleneck in AI acceler-

ation is the massive and high-cost data movements [8]. Our algorithm-hardware co-design work,
called SmartExchange [1, 2], trades higher-cost memory storage/accesses for lower-cost computa-
tions to boost the energy- and latency-efficiency.

• AI Acceleration Integrated Chip: Motivated by the promising efficiency achieved by SmartEx-
change, we further validated its co-designed architecture by designing an AI acceleration chip pro-
totype, while taking the chip’s area efficiency and control overhead into design considerations.

• Single-Chip Integrated System: To demonstrate the real-efficiency of the above SmartExchange
architecture and its chip prototype, we integrated the AI acceleration chip with a lensless camera
(i.e., FlatCam [9]) to develop the first-of-its-kind real-time eye-tracking system, called i-FlatCam [4],
targeting eye tracking in next-generation VR/AR devices [10], where the application-level oppor-
tunities were leveraged to reduce both spatial and temporal redundancy in eye images.

• Multi-Chip Integrated System: We also built a scaled-up eye-tracking system, called EyeCoD [6],
utilizing multiple AI acceleration chips for enabling more general eye-tracking solutions.

Publications and Highlights. My research has led to over 20 publications (11 as the 1st author) in
top-tier computer architecture and circuit design conferences/journals, including ISCA, VLSI,
MICRO, HPCA, ICCAD, ICASSP, FPGA, TNNL, TCAD, TVLSI, etc, and won 1st place demon-
stration at the 32nd ACM SIGDA University Demonstration at DAC’22 [7]. Additionally, I have
been a significant contributor to 5 research projects (4 funded by NSF and 1 funded by NIH), and
am a recipient of the 2020 Cadence Women in Technology Scholarship (1 of 13 winners nation-
wide) [11]. Finally, I have served as a regular reviewer for top-tier journals, e.g., TCAS-II and TNNL,
and was one of the four key contributors/speakers in the AutoDL tutorial at MICRO’22 [12].
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Completed Research
SmartExchange - Algorithm-Hardware Co-Designed Architecture (ISCA’20): The huge amount
of parameters and intermediate data in DNNs need external DRAM for storage in edge devices. How-
ever, the prohibitive cost of massive DRAM accesses, whose unit energy is two orders of magnitude
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Figure 2: The proposed SmartExchange’s weight
representation.

higher than the corresponding computation op-
erations, limits the achievable acceleration effi-
ciency of DNNs, calling for innovations to mini-
mize the required data movements and boost effi-
ciency. To tackle this, we proposed an algorithm-
hardware co-design technique dubbed SmartEx-
change [1], which trades higher-cost memory stor-
age/accesses for lower-cost computations, to boost
the acceleration efficiency of both DNN inference
and training. Specifically, on the algorithm level, a
hardware-friendly DNN weight structure was en-
forced, where only a subset of parameters is stored
in DRAM for each layer, and the remaining major-
ity of weights can be recovered from lower-cost computations when needed (see Fig. 2); On the hard-
ware level, I further designed a dedicated architecture to fully leverage the SmartExchange-enforced
algorithm structure, including minimizing the overhead of rebuilding weights and taking advantage
of the structured sparsity to improve energy- and latency-efficiency. Experiments show that Smar-
tExchange can boost energy- and latency-efficiency by up to 6.7× and 19.2×, respectively, over 4
state-of-the-art (SOTA) DNN accelerators when benchmarked on 7 DNN models and 3 datasets.
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Figure 3: The die photo of our AI ac-
celeration chip.

AI Acceleration Chip (VLSI’22): Motivated by the promis-
ing results of the above-mentioned SmartExchange, I im-
plemented its architecture into an AI acceleration chip pro-
totype. First, our acceleration chip focuses on optimizing
depth-wise convolution layers (DWs), which are widely used
in parameter-efficient DNNs but may not lead to real hard-
ware efficiency due to their low hardware utilization [4].
Second, our acceleration chip takes area efficiency and con-
trol overhead into consideration to balance the area overhead
with hardware efficiency while minimizing the control over-
head. To achieve these goals, our AI chip features (i) a dedi-
cated heterogeneous dataflow for both general convolutional
layers (CONVs) and DWs to enhance hardware utilization,
(ii) a sequential-write-parallel-read (SWPR) input activation
feature map (IFM) buffer design to provide a 2× higher FM memory bandwidth for better leverag-
ing the structure sparsity in the SmartExchange algorithm with a negligible area overhead, and (iii) a
customized instruction set architecture (ISA) to support the above optimizations. Specifically, (i) for
the hybrid dataflow, the acceleration chip leverages the intra-channel dataflow for DWs while using
the inter-channel dataflow for other layers (e.g., CONVs and point-wise convolution layers), boosting
the compute resource utilization by 75∼87.5% for DWs. A reconfigurable feature map (FM) global
buffer (GB) storage and weight buffer designs are developed to support the dataflow. (ii) The structure
sparsity in the SmartExchange algorithm allows for skipping both corresponding computations and
GB weight accesses but at the cost of a higher FM GB bandwidth, which will increase the chip area
and leads to bandwidth waste when processing other layers. The SWPR IFM buffer design is inserted
between the FM GB and compute resource to provide a 2× higher bandwidth, incurring a negligi-
ble area overhead of 0.58%. (iii) The customized ISA explores the parallel and repetitive processing
operations in DNN processing to support all the optimizations adopted by the chip efficiently.
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Figure 4: i-FlatCam’s (a) predict-then-focus pipeline, (b) measured setup, and (c) measured results.

System Integration of Our AI Acceleration Chip for a Real-world Application (VLSI’22): We
integrated the above AI acceleration chip with a lensless camera (i.e., FlatCam [9]) to build an eye-
tracking system, called i-FlatCam, for enabling a highly demanded AI-powered functionality, i.e.,
eye tracking which estimates the gaze directions of human eyes, in VR/AR devices. Real-hardware
measurements show that our i-FlatCam system is the first to simultaneously meet all three require-
ments of eye tracking required by next-generation VR/AR devices, including real-time throughput
(i.e, >240FPS), milli-watt power consumption, and small form factor as recently pointed out by
Meta [10]. As a highlight, our i-FlatCam system further leverages the application-level opportunity
that spatial and temporal redundancy exists in input eye images to reduce redundant computations
and costly data movements. Specifically, to reduce spatial redundancy in eye images, we proposed
a dedicated predict-then-focus pipeline that first extracts region-of-interests (ROIs), which comprise
only 24% (average) of the original eye images for gaze estimation, to reduce unnecessary spatial in-
formation, using an eye detection model. To reduce temporal redundancy, the temporal correlation
of eyes across frames is leveraged so that only 5% of the frames require ROIs adjustment over time.
To enable this predict-then-focus pipeline, our chip integrates dedicated instructions in its ISA. No-
tably, our i-FlatCam system won 1st place demonstration at the 32nd ACM SIGDA University
Demonstration at Design Automation Conference (DAC), 2022 [7].
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Figure 5: EyeCoD’s multi-chip setup.

Scaled-Up System Integration of Multiple AI Accelera-
tion Chips (EyeCoD, ISCA’22): In addition to the single-
chip i-FlatCam system, we took another big leap towards
accelerating eye segmentation-based eye tracking function-
ality for enabling more general eye tracking in VR/AR.
The motivation is that segmentation can provide richer fea-
tures to enable more follow-up tasks needed in VR/AR to-
wards practical and general VR/AR uses [13]. However, the
higher-complexity segmentation model brings about three
challenges for the underlying hardware: (i) a much larger
model complexity, i.e., 80.1× more parameters and 186.7×
more operations than the previously-adopted detection model, (ii) a more diverse model structure,
i.e., U-Net [14] type for segmentation versus a MobileNet [15] type for detection, and (iii) a higher
input image resolution. To address these challenges, we developed a scaled-up architecture and multi-
chip system focusing on orchestrating the required segmentation and gaze estimation models, without
significantly increasing the required chip and memory bandwidth, and thus the power consumption.
Specifically, the multi-chip architecture includes a dedicated: (i) workload orchestration between the
eye segmentation and gaze estimation models and (ii) activation FM partition method and activation
FM GB storage arrangement for all involved layer types (e.g., downsampling and upsampling lay-
ers) to favor the workload orchestration and reduced activation FM GB size. Our scaled-up system
can achieve the required real-time throughput requirement (i.e., >240FPS), with only 2.68×/2.17×
area/power of that in the single-chip system for enabling general VR/AR uses [13].
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Future Research
Looking forward, I strongly believe that our holistic perspective from architectures, to chips, and
to integrated systems will be one key driving force to enable ubiquitous edge intelligence, and my
research principle of marrying algorithm-hardware co-design techniques with application-level op-
portunities can lead to much-boosted efficiency and thus enable more emerging AI-powered intelli-
gent applications. Additionally, my research principle can be extended to consider more real-world
application metrics, e.g., both robustness and efficiency, and provide indispensable insights for de-
signing automation tools that can reduce the design complexity, time-to-market, labor cost, and risks.
Looking ahead, I am very excited to expand my research principle and expertise into the following
research directions towards ubiquitous AI-powered edge intelligence.
Enabling More Emerging AI-powered Applications: AI algorithms continue to revolutionize an
ever wider range of emerging applications with an unprecedented amount of computations, parame-
ters, and intermediate data [16], while their corresponding AI-powered applications demand stringent
energy- and/or latency-efficiency to be deployed edge devices for unleashing their big promise. My
research principle can be expanded to enable emerging AI-powered applications. For example, 3D
reconstruction, i.e., the reconstruction of a 3D scene to generate images of any arbitrary views given
images from a set of sparsely sampled views of a scene, is a representative application that has re-
cently achieved breakthroughs in rendering quality thanks to the adopted AI algorithm called Neural
Radiance Field (NeRF). My prior and ongoing works in accelerating NeRF are as follows:
• Real-Time On-Device NeRF Inference (RT-NeRF; ICCAD’22): To enable immersive real-time

(>30FPS) NeRF inference, we first profile and analyze the throughput bottlenecks of a SOTA ef-
ficient NeRF algorithm and then propose RT-NeRF [16], the first algorithm-hardware co-design
technique to tackle the identified bottlenecks. Specifically, on the algorithm level, RT-NeRF inte-
grates an efficient rendering pipeline for largely alleviating irregular memory accesses by directly
computing the geometry of pre-existing points; On the hardware level, we proposed (i) a hybrid
encoding scheme, aiming to maximize the storage savings and thus reduce the required DRAM
accesses and (ii) a high-density sparse search unit and a dual-purpose bi-direction adder & search
tree to coordinate the hybrid encoding scheme. Extensive experiments on 8 datasets consistently
validate the real-time performance of RT-NeRF while maintaining the rendering quality.

• Instant-NeRF for Instant On-Device NeRF Training via Near-Memory Processing: To tackle
the memory-bounded training time bottleneck in NeRF unveiled by our profiling, we propose
Instant-NeRF [17], the first near-memory processing (NMP) architecture for NeRF training via
algorithm-hardware co-design. Specifically, our Instant-NeRF’s algorithm adopts a locality-sensitive
hashing function to enhance the locality of hash table lookups and a ray-first point processing se-
quence to replace the original random sequence; Our instant-NeRF’s architecture integrates a ded-
icated mapping scheme optimized for Instant-NeRF’s algorithm and a heterogeneous inter-bank
parallelism design, orchestrating the diverse computation and memory patterns in NeRF’s hetero-
geneous training steps, to minimize the inter-bank data movement overhead. Extensive experiments
on 8 datasets verify that Instant-NeRF provides a 22.0∼266.1× speedup over SOTA edge GPUs.

Enabling Both Robustness and Efficiency Towards Real-World Intelligent Systems: Real-world
applications require both efficiency and robustness, the latter of which is because real-world systems
are vulnerable to malicious hardware modifications (i.e., hardware Trojans), erroneous inputs, and
execution-time errors. Specifically, for AI-powered applications, hardware Trojans can lead a system
to malfunction after being triggered; Adversarial examples can fool the models to degrade accuracy
or even crash the systems. My prior work inspired and prepared me for this direction is as follows:
• Memory Trojan Attack on DNN Accelerators (Memory Trojan; TCAD’20, DATE’19): The

development of practical attacks is the prerequisite for defending robustness in AI-powered systems.
Previous works introduce hardware Trojan attacks in the scope of DNN accelerators, which require
a strict assumption that the adversary has access to the DNN models, toolchains (i.e., algorithm-to-
hardware mapping tools), and hardware accelerators. In this work [18, 19], we developed a novel
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hardware Trojan inserted within the memory controller, where the Trojan can only monitor the
memory access patterns and modifies the data written back to external storage after being triggered.
Such a hardware Trojan is much more practical and even works well with environmental noise
and/or preprocessing on the original images, potentially inspiring more practical robust defense
and robustness-efficiency co-designed methods.

Developing Automated Tools to Facilitate Fast Development of Efficient AI Solutions: Fast and
accurate performance estimation of AI accelerators with various hardware optimization techniques is
one key enabler [20] for developing automated co-design and co-search tools. My prior work that has
inspired and prepared me for in this direction is as follows:
• DNN-Chip Predictor (ICASSP’20): I developed and released the first-of-its-kind analytical simu-

lator of AI accelerator chips called DNN-Chip Predictor [3] by bridging hardware design principles
and mathematical models, which can efficiently and effectively predict an accelerator’s energy,
latency, and resource consumption prior to its actual implementation and has been deployed by
following-up work [20]. DNN-Chip Predictor features two highlights: (i) its analytical perfor-
mance formulation of DNN ASIC/FPGA accelerators facilitates fast design space exploration and
optimization and (ii) it supports DNN accelerators with different dataflows and hardware archi-
tectures. Experiment results based on two DNN models and three different ASIC/FPGA imple-
mentations show that our DNN-Chip Predictor’s predicted performance differs from those of chip
measurements of FPGA/ASIC implementation by no more than 17.66% when using different DNN
models, hardware architectures, and dataflows.
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